

Introduction to blood Physiology

2-bal ygoloisyhP/2 Stage

By: Assist -lec: Rabia khalid

Blood

Def.,

 Blood is a complex reddish fluid which circulates continuously inside CVS

Volume:

• 5.6 L in 70kg man i.e. 8% of body weight

Activate Win Go to Settings to

Blood Composition

Def.,

It is a clear fluid in which blood cells are suspended

Functions of plasma		
Constituent	Function	
Water	Absorbs, transports and releases heat	
Albumins	Osmotic balance	
Globulins	Defense mechanism	
Fibrinogen	Blood clotting	
Electrolytic ions	pH buffering	

Erythrocyte count:

■ Males: 5.0-5.5 million/mm³

• Females: 4.5-5.0 million/mm³

• Newborn: 6.0- 8.0 million/mm³

• Child and old age: 3.5- 4.5

million/mm3

Persons living at high

altitude: increase

Activate Window Go to Settings to active

Shape:

Circular, Non-nucleated, Biconcave discs

Activate Wind Go to Settings to a

☐Structure of RBCs:

- RBCs are not true cells, because they have no nuclei, so called corpuscles.
- a) The cell membrane:
- Is plastic semipermeable membrane
- Has large surface area

Activate Windo

☐Structure of RBCs:

b) Contents:

- **❖Hb** (34% of RBC) is the main constituent.
- **❖K**⁺ is the chief intracellular cation.
- Carbonic anhydrase enzyme helps CO₂ transport,
- ❖ No mitochondria, so they obtain energy from anaerobic glycolysis

Haemoglobin

0

1) Functions of cell membrane:

- a) It has a large surface area than the actual cell volume;
- ☐ Gives RBCs its biconcave shape.
- □ Allows **easy diffusion of gases** through cell membrane.

1) Functions of cell membrane:

b) Plastic → enhances cell flexibility → allow RBCs to be squeezed in small capillaries without rupture of it.

- Functions of cell membrane:
- c) It keeps Hb inside RBCs → prevent its loss in urine.
- □ Filtration of Hb into glomeruli causes its precipitation in renal tubules and acute renal failure.
- 2) Functions of Hb:
- a.Transport of O₂ from lung to tissues by hemoglobin.
- **<u>b.Transport of CO</u>**₂ from tissue to lung by help of carbonic anhydrase
- c. Hb is an excellent acid base buffer

3) Functions of carbonic anhydrase enzyme:

☐ It helps in transport of CO2.

4) Blood viscosity:

□RBCs share in production of blood viscosity, which maintains arterial blood pressure.

۰

Life span and fate of RBCs

· Life span of RBCs is about 120 days

Erythropoiesis

The production of RBCs is known as erythropoiesis.

Adult	Red bone marrow of long bones (hip bone, breast bone & ribs)	
Child (upto 5 year)	Bone marrow of all the bones	
Foetus	Liver & spleen	

- Increase in number of RBCs is known as polycythemia
- Decrease in number of RBCs is known as erythropenia

White Blood Cells (Leucocytes)

Count of WBCs:

• Ranges from 4000-11000/mm3.

Types of WBCs:

- Classified into 2 types;
- 1. Granular: 3 types
- Neutrophils
- Basophils
- Eosinophils
- 2. Agranular: 2 types
- Monocytes
- Lymphocytes

Granular WBCs

Туре	Appearance	Features	Functions	Location produced
Neutrophils	3	Nucleus with 3-4 lobes Stain with neutral dye (hematoxylin)	Destroy bacteria by phagocytosis	Bone marrow
Acidophils (eosinophils)		Nucleus with 2 lobes Stain with acidic dye (eosin)	Combat the effect of histamine in allergic reactions	Bone marrow
Basophils		Nucleus with indistinct lobes Stain with basic dye (methylene blue)	Liberate heparin and histamine in allergic reactions to intensify inflammatory response	Bone marrow

Agranular WBCs Location **Functions** Type Appearance Features produced · Smallest of Bone marrow, **WBCs** Produce Lymphocyte spleen, antibodies · Large round tonsils nucleus Largest of WBCs Ingest Monocyte Bone marrow Large kidney microorganisms shaped nucleus

Leucopoiesis

The production of WBCs is known as leucopoiesis.

Adult	Liver, spleen, tonsils, bone marrow
Foetus	Liver, spleen

- Increase in number of WBCs is known as leucocytosis
- Decrease in number of WBCs is known as leucopenia
- Pathological increase in number of WBCs is known as leukemia (blood cancer)

PLATELETS

- · Also called thrombocytes.
- Derived from ruptured multinucleate cells (megakaryocytes)
- · Smallest of formed elements.
- · Are fragments of megakaryocytes.
- · Lack nuclei.
- Normal platelet count = 300,000/mm3
- · Survive 5-9 days

Thrombopoiesis

The production of platelets is known as thrombopoiesis.

Platelets are the fragments of large cells called megakaryocytes that remain in the bone marrow.

- Increase in number of platelets is known as thrombocytosis
- Decrease in number of platelets is known as thrombocytopenia

Blood Collectoin

Blood sampling used for the laboratory tests can be either:-

- 1- Capillary blood. In this method blood can be taken by pricking:-
- A- The lobe of the ear
- B- The side surface of the finger
- C- The infants from the planter surface of the heel or The great toe.

This method is carried when the test needs little amount of blood.

2- Venous blood.

It is preferred for most hematological examination. In this method blood can be collected from many sites especially the **antecubital veins** of the forearm

This method is carried when the test needs a lot of amount of blood.

3- Arterial blood.

This is done by a special type of syringe the artery usually chosen is the **radial artery**. The test is especially valuable for <u>blood gas analysis</u>.

