Carboxylic acids and their Derivatives

Carbonyl containing compounds

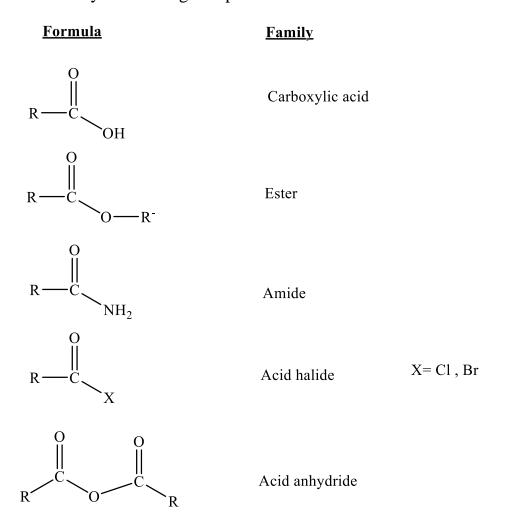


Table (1): Aliphatic Carboxylic acids

Carbon atom	<u>Formula</u>	Common name	<u>Iupac</u> <u>name</u>
1	НСООН	Formic acid	methanoic acid
2	CH₃COOH	Acetic acid	ethanoic acid
3	CH ₃ CH ₂ COOH	Propionic acid	propanoic acid
4	CH ₃ CH ₂ CH ₂ COOH	Butyric acid	butanoic acid
5	CH ₃ CH ₂ CH ₂ CH ₂ COOH	Valeric acid	pentanoic acid
6	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ COOH	Caproic acid	hexanoic acid

١

Examples :-

3-bromobutanoic acid

$$Cl \qquad Cl \qquad Cl \qquad CC \qquad CH_2$$

$$CH_3$$

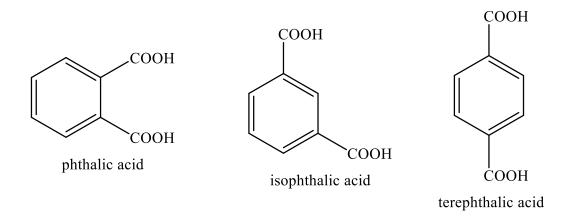
3,4-dichloropentanoic acid

2-ethylbutanoic acid

4-chlorobenzoic acid

Di acids

Table (2):- Aliphatic Di carboxylic acids


<u>Formula</u>	Common name	<u>Iupac</u> <u>name</u>	
HOOC—COOH	oxalic acid	ethanedioic acid	
HOOC—C—COOH	malonic acid	propanedioic acid	
HOOC— $(CH2)2—COOH$	succinic acid	butanedioic acid	
HOOC— $(CH2)3—COOH$	glutaric acid	pentanedioic acid	
HOOC— $(CH2)4—COOH$	adipic acid	hexanedioic acid	
HOOC— $(CH2)5—COOH$	pimelic acid	heptanedioic acid	

Aliphatic di carboxylic acid are given the suffix –dioic acid in the Iupac system. For example:-

Many di carboxylic acids occur in nature and go by their common names, which are based on their source; table (2) lists some common aliphatic di acids. The most important commercial compound in these groups is adipic acid, used manufacture nylon.

The two-butenedioic acids played a historic role in the discovery of cistrans isomerism and are usually known by their common names maleic and fumaric acid.

The three benzene di carboxylic acids are generally known by their common names

Physical Properties of carboxylic acids

- 1- Hydrogen bonding
- 2- Solubility in water (lower acids)
- 3- Acidity

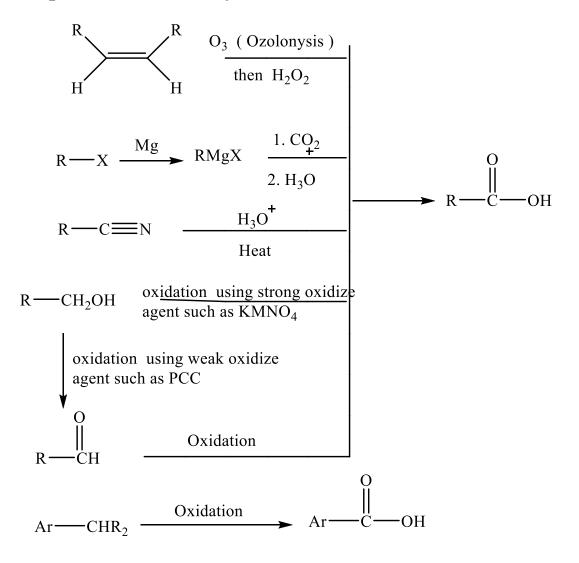
Note:- first and second properties in table (3), third properties in table (4).

Table (3):- physical properties of some carboxylic acids

<u>Name</u>	<u>b.p</u> <u>C</u> -	<u>m.p</u> <u>C</u> -	Solubility g / 100 g $\underline{H_2O}$ at $\underline{25}$ \underline{C}°
formic acid	100.5	8	∞
acetic acid	118	16.6	∞
propanoic acid	141	-22	∞
butanoic acid	164	-8	∞
pentanoic acid	187	-34	3.7
hexanoic acid	205	-1.5	1.0

Acidity of Carboxylic Acids

Aqueous solutions of carboxylic acids are much weaker acids than inorganic acids, such as HCl, but are much stronger acids than most other types of hydrocarbons (alcohols, ketones, alkynes, etc.). Carboxylic acids typically have pKa values of 4 to 5. Inorganic acids have negative pKa values. Alcohols have pKa values of about 15 to 16. Carboxylic acids and alcohols can both act as Brønsted–Lowry acids and ionize to give a proton (H+) and an anionic conjugate base. Each base has a negative charge on an oxygen atom. The carboxylate anion is more stable (is a weaker base) than an alkoxide anion. One reason for this stability is that the electrons in the carboxylate anion can be delocalized over both oxygen atoms. Delocalization increases stability. As the stability of an anion increases, the acid dissociation equilibrium shifts to produce more of the anion, concurrently increasing the hydrogen ion concentration (acidity). Acid dissociation equations and Lewis resonance structures of the two anions (carboxylate and alkoxide) are shown in **Fig 1.**


Table (4):- The Ionization Constants of Some acids

<u>Name</u>	<u>Formula</u>	<u>Ka</u>	<u>pka</u>
formic acid	НСООН	17.7×10^{-5}	3.68
acetic acid	CH ₃ COOH	1.75×10^{-5}	4.74
propionic acid	CH ₃ CH ₂ COOH	1.4×10^{-5}	4.85
butyric acid	CH ₃ CH ₂ CH ₂ COOH	1.6×10^{-5}	4.80
chloro acetic acid	ClCH ₂ COOH	136×10^{-5}	2.82
dichloro acetic acid	Cl ₂ CHCOOH	5530×10^{-5}	1.30
trichloro acetic acid	Cl ₃ CCOOH	23200×10^{-5}	0.7

Resonance and Inductive effect

The acidity of trichloro acetic acid is stronger than the dichloro acetic acid and chloro acetic acid.

Preparation of Carboxylic acid

Example:-

Example :-

Example:-

Preparation of Benzoic acid from benzene from two methods

- 1. Oxidation of aliphatic chain using potassium permanganate (KMNO₄)
- 2. Using Grignard reagent.

 $KMNO_4$

benzoic acid

Comp 4 NO Reaction

$$CH_3$$

$$CH_3Cl$$

$$AlCl_3$$

$$KMNO_4$$

$$KMNO_4$$

2.
$$Cl_2$$
 $MgCl$ $I. CO_2$ $I. CO_2$

REDUCTION OF CARBOXYLIC ACIDS

Carboxylic acids are reduced to alcohols by LAH. The initial reduction product is an aldehyde which is subsequently reduced to an alkoxide anion. In a second step, the alkoxide anion is protonated to give the corresponding primary alcohol.

$$\begin{array}{c|c}
O \\
H_3C - C - OH \\
\text{acetic acid}
\end{array} \xrightarrow{\begin{array}{c}
1. \text{ LAH} \\
2. \text{ H}
\end{array}} H_3C - C - OH \\
\text{ethanol} \\
\text{primary alcohol}
\end{array}$$

Note:- that both carbonyl groups are reduced.

Reduction of oxalic acid by LAH to give ethylene glycol

HO
$$O$$
 OH O OH O OH ethylenglycol oxalic acid

Derivatives of Carboxylic acids

$$CH_3COOH + NaOH$$
 \longrightarrow $CH_3COONa + H_2O$ neutralization reaction

substitution reaction

ESTERS

Esters are derived from acids by replacing the OH group by an OR group . They are named in a manner analogous to carboxylic acid salt. The R part of the OR group is named first followed by the name of the acid , with the –ic ending changed to –ate.

Notice: - the different names of the following pair of isomeric esters, where the R and R` groups are interchanged

$$CH_3C$$
 O CH_3 CH_3C O CH_3 CH_3C CH_3C CH_3 CH_3C CH_3 CH_3C CH_3C

Nomenclature of esters

$$\begin{array}{c} CH_3 & CH_3 & O \\ OCH_2CH_3 & O \\ OH & OCH_3 \\ \hline \\ ethyl \ 2-chloro-3-oxobutanoate \\ \end{array}$$

OCH₂CH₃

Reactions of Carboxylic acid

Formation of esters

$$CH_3$$
 C $+$ CH_3CH_2OH \longrightarrow CH_3 C $+$ H_2O OCH_2CH_3 $+$ CH_3CH_2C OCH_3 OC

Smelly Stuff

Lactones (Cyclic Esters)

$$\begin{array}{c|c}
O & & O \\
\hline
O & O \\
O & & C \\
\hline
O & O \\
O & O \\
\hline
O & O \\$$

γ- Lactones

Lactam is cyclic amide

Ammonolysis of Esters

Ammonia converts esters to amides

Reduction of Esters

Esters can be reduced to primary alcohols

Esters reacted with Grignard reagent produced tert- alcohols

$$R \xrightarrow{O} \qquad R \xrightarrow{R'' - MgX} \qquad R \xrightarrow{OH} \qquad R \xrightarrow{C} R''$$

$$R \xrightarrow{C} \qquad R''$$
tert- alcohol

Acid Halides

They are prepared from the reaction of acids with thionyl chloride or phosphorus halides

Reactions of carboxylic acids (Formation of derivatives)

1. Acid chlorides

Reactions of acid chlorides

Acid chlorides react rapidly with most nucleophiles such as water, alcohols and ammonia.

Acyl halides have irritating odors . Benzoyl chloride is a lachrymator (tear gas).

2. Acid anhydrides

Formed from the combination of two acids and the loss of water.

Nomenclature of acid anhydride

Preparation of mixed anhydride

Di Acids

fumaric acid

terephthalic acid

Nucleophilic Substitution of anhydride

Example:-

Amide

Amide Nomenclature

Similar to carboxylic acid

Drop-oic acid ending and replace with amide

Properties of amide

They have exceptionally high boiling points for their molecular weight, although alkyl substitution on the nitrogen lowers the boiling and melting points by decreasing the hydrogen bonding possibilities, as shown in the following two pairs of compounds:-

Preparation of amides

Production from a carboxylic acid

$$H_3C$$
 \longrightarrow C \longrightarrow \longrightarrow C \longrightarrow

Production from an acid chloride

The amide is not reactive and that because the resonance.

If we have a diamine and a diacid chloride, we can produce a polymer using amide bonds, Nylon is an example.

n Cl
$$\xrightarrow{C}$$
 $\xrightarrow{H_2}$ $\xrightarrow{H_2}$ \xrightarrow{C} \xrightarrow{C}

polyamide nylon

Reactions of amides (Hydrolysis and Reduction)

$$R \longrightarrow C \longrightarrow NH_2 + H \longrightarrow OH \longrightarrow R \longrightarrow C \longrightarrow OH + NH_3$$

The reactions are slow and prolonged heating or acid or base catalysts is usually necessary.

Amides can be reduced by lithium aluminum hydride to give amines.

$$R \xrightarrow{O} \text{C-NH}_2 \xrightarrow{\text{LiAlH}_4} \text{RCH}_2 \text{NH}_2$$

This is an excellent way to make primary amines, whose chemistry is discussed.

Some significant examples

Analgesics – painkillers

Antipyretics – fever reduces

2-acetoxybenzoic acid
Acetyl salicylic acid
(Aspirin)

$$H_3C$$
 O
 O
 O
 O
 O
 O

Acetaminophen (Tylenol)