Mass Spectrometry Lecture 8

- Alkanes
 - Fragmentation often splits off simple alkyl groups:

 Loss of methyl 	M ⁺ - 15
 Loss of ethyl 	M ⁺ - 29
 Loss of propyl 	M ⁺ - 43
 Loss of butyl 	M ⁺ - 57

Branched alkanes tend to fragment forming the most stable carbocations.

Saturated hydrocarbons: Alkanes

m/z

2. Branched Alkanes

Figure 2 Mass spectrum of 5-methylpentadecane.

3. Cycloalkanes

2 Martin Martin Martin Martin Martin Martin Martin Martin

Figure 5 Mass spectrum of cyclohexane.

Figure 6 Mass spectrum of 1-methyl-3-pentylcyclohexane.

- Alkenes:
 - Fragmentation typically forms resonance stabilized allylic carbocations

Fragmentation

■ 1-Hexene radical cation © 2006 Brooks/Cole - Thomson

- Aromatics:
 - Fragment at the benzylic carbon, forming a resonance stabilized benzylic carbocation (which rearranges to the tropylium ion)

Aromatics may also have a peak at m/z = 77 for the benzene ring.

Aromatic hydrocarbons

Figure 7 Mass spectrum of 1-phenylhexane

Mathematica Scheme Alcohols, Phenol and Ether

1. Alcohol

Alcohols:

Alcohols undergo α-cleavage (at the bond next to the C-OH) as well as loss of H-OH to give C=C (M-18 common)

© 2007 Thomson Higher Education

MS for 1-propanol

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

3-Ethers

 $- \frac{\alpha \text{-cleavage forming oxonium ion}}{[R + CH_2 - O - R']^{\dagger}} \xrightarrow{H} C = O^{\pm} R'$

- Loss of alkyl group forming oxonium ion $[R-CH_2-O+R']^{\ddagger} \xrightarrow{\sim} R - CH = O^{\ddagger} H$

- Loss of alkyl group forming a carbocation $[R-CH_2-O+R']^+ \longrightarrow R-CH_2-O++R'$ not observed alkyl cation Copyright © 2006 Pearson Prentice Hall, Inc.

MS of diethylether (CH₃CH₂OCH₂CH₃)

Copyright © 2006 Pearson Prentice Hall, Inc.

• Amines

 Odd M⁺ (assuming an odd number of nitrogens are present)

– $\alpha\text{-}cleavage$ dominates forming an iminium ion

$$CH_{3}CH_{2}-CH_{2}-N-CH_{2}+CH_{2}CH_{2}CH_{3} \longrightarrow CH_{3}CH_{2}CH_{2}N=CH_{2}$$

$$H$$

$$H$$

$$H$$

$$m/z = 72$$

iminium ion

Copyright © 2006 Pearson Prentice Hall, Inc.

• Aldehydes (RCHO)

– Fragmentation may form acylium ion $RC\equiv O$:

- Common fragments: $\mathbb{RC}\equiv O$:
 - M⁺ 1 for

$R \oplus$ (i.e. RCHO - CHO)

• M⁺ - 29 for

• MS for hydrocinnamaldehyde

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

Ketones

– Fragmentation leads to formation of acylium ion:

- Loss of R forming $R'C \equiv O$:
- Loss of R' forming $RC \equiv O$:

Fragmentation Patt O CH₃CCH₂CH₂CH₂CH₃

MS for 2-pentanone

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

- Esters (RCO₂R')
 - Common fragmentation patterns include:
 - Loss of OR'
 - peak at M⁺ OR'
 - Loss of R'
 - peak at M⁺ R[']

SDBSWeb : http://riodb01.ibase.aist.go.jp/sdbs/ (National Institute of Advanced Industrial Science and Technology, 11/28/09)

Carboxylic acid

 The "Rule of Thirteen" can be used to identify possible molecular formulas for an unknown hydrocarbon, C_nH_m.

- Step 1: n = M⁺/13 (integer only, use remainder in step 2)

- Step 2: m = n + remainder from step 1

 Example: The formula for a hydrocarbon with M⁺=106 can be found:

- Step 1: n = 106/13 = 8 (R 0.15X 13 = 2)

- Step 2: m = 8 + 2 = 10

– Formula: C_8H_{10}

- If a heteroatom is present,
 - Subtract the mass of each heteroatom from the MW
 - Calculate the formula for the corresponding hydrocarbon
 - Add the heteroatoms to the formula

Example: A compound with a molecular ion peak at m/z = 102 has a strong peak at 1739 cm⁻ ¹ in its IR spectrum. Determine its molecular formula.

- If a heteroatom is present,
 - Subtract the mass of each heteroatom from the MW
 - Calculate the formula for the corresponding hydrocarbon
 - Add the heteroatoms to the formula

Example: A compound with a molecular ion peak at m/z = 102 has a strong peak at 1739 cm⁻ ¹ in its IR spectrum. Determine its molecular formula. Step 1: Due to the compound has a strong peak at 1739 cm-1 in its IR spectrum therefore it contain ester group (COO-), so it Contain 2heteroatom O.

102-32 =70 MW of corresponding hydrocarbon.

Step 2: 70/13 = 5.384 n = 5 (R= 0.38 4X 13= 5)

Step 3: m 5+5 =10

Step 4: Chemical formula = CnHm + heteroatom $C_5H_{10}O_2$

CH₃CH₂CH₂COOCH₃